MATHEMATICS - II

UNIT - I Vector Calculus: Vector Calculus: Scalar point function and vector point function, Gradient- Divergence- Curl and their related properties. Solenoidal and irrotational vectors finding the Potential function. Laplacian operator. Line integral - work done - Surface integrals Volume integral. Green's Theorem, Stoke's theorem and Gauss's Divergence Theorems (Statement \& their Verification).

UNIT - II Fourier series and Fourier Transforms: Definition of periodic function. Fourier expansion of periodic functions in a given interval of length 2π. Determination of Fourier coefficients - Fourier series of even and odd functions- Fourier series in an arbitrary interval even and odd periodic continuation - Half-range Fourier sine and cosine expansions.Fourier integral theorem - Fourier sine and cosine integrals. Fourier transforms - Fourier sine and cosine transforms - properties - inverse transforms - Finite Fourier transforms.

UNIT - III Interpolation and Curve fitting Interpolation: Introduction- Errors in Polynomial Interpolation - Finite differences- Forward Differences- Backward differences -Central differences - Symbolic relations of symbols. Difference expressions - Differences of a polynomial-Newton's formulae for interpolation - Gauss Central Difference Formulae Interpolation with unevenly spaced points-Lagrange's Interpolation formula.Curve fitting: Fitting a straight line -Second degree curve-exponential curve-power curve by method of least squares.

UNIT - IV Numerical techniques: Solution of Algebraic and Transcendental Equations and Linear system of equations: Introduction - Graphical interpretation of solution of equations .The Bisection Method - The Method of False Position - The Iteration Method - Newton-Raphson Method .Solving system of non-homogeneous equations by L-U Decomposition method (Crout's Method). Jacobi's and Gauss-Seidel iteration methods.

UNIT - V Numerical Integration and Numerical solutions of differential equations:

Numerical integration - Trapezoidal rule, Simpson's $1 / 3$ rd and $3 / 8$ Rule, Gauss-Legendre one point, two point and three point formulas.Numerical solution of Ordinary Differential equations: Picard's Method of successive approximations. Solution by Taylor's series method - Single step methods-Euler's Method-Euler's modified method, Runge-Kutta (secondand classical fourth order) Methods.Boundary values \& Eigen value problems: Shooting method, Finite difference method and solving eigen values problems, power method

