## **Fluid Mechanics**

# UNIT-I

**Introduction :** Dimensions and units – Physical properties of fluids specific gravity, viscosity, surface tension, vapor pressure and their influences on fluid motion pressure at a point, Pascal's law, Hydrostatic law - atmospheric, gauge and vacuum pressure- measurement of pressure. Pressure gauges, Manometers: differential and Micro Manometers.

**Hydrostatic Forces :** Hydrostatic forces on submerged plane, Horizontal, Vertical, inclined and curved surfaces – Center of pressure. Derivations and problems.

### UNTI – II

**Fluid Kinematics :** Description of fluid flow, Stream line, path line and streak lines and stream tube. Classification of flows : Steady, unsteady, uniform, non-uniform, laminar, turbulent, rotational and irrotational flows – Equation of continuity for one, two, three dimensional flows – stream and velocity potential functions, flownet analysis.

### UNIT –III

**Fluid Dynamics:** Surface and body forces – Euler's and Bernoulli's equations for flow along a stream line for 3-D flow, (Navier – stokes equations (Explanationary) Momentum equation and its application – forces on pipe bend.Pitot tube, Venturi meter and orifice meter – classification of orifices, flow over rectangular, triangular and trapezoidal and Stepped notches - –Broad crested weirs.

### $\mathbf{UNIT} - \mathbf{IV}$

**Boundary Layer Theory :** Approximate Solutions of Navier Stoke's Equations – Boundary layer – concepts, Prandtl contribution, Characteristics of boundary layer along a thin flat plate, Vonkarmen momentum integral equation, laminar and turbulent Boundary layers (no deviation), BL in transition, separation of BL, control of BL, flow around submerged objects-Drag and Lift-Magnus effect.

#### UNIT –V

**Closed Conduit Flow :** Reynold's experiment – Characteristics of Laminar & Turbulent flows. Flow between parallel plates, Flow through long tubes, flow through inclined tubes. Laws of Fluid friction – Darcy's equation, Minor losses – pipes in series – pipes in parallel – Total energy line and hydraulic gradient line. Pipe network problems, variation of friction factor with Reynold's number – Moody's Chart.